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The coral reefs around Praia do Tofo, southern Mozambique, are known for their
aggregations of marine megafauna but as yet few studies have comprehensively
examined their broader biodiversity. This study is the first to assess the ichthyofaunal
diversity of this economically important area. Methodology involved SCUBA and snorkel
underwater visual censuses conducted between February and May, 2016, and the use of
photographic records from 2015 to capture rare species. A total of 324 species,
representing 79 families, were recorded from 16 reefs in the region. The area shows
comparable species diversity and notably high family diversity in relation to other areas of
the Western Indian Ocean. The trophic structure of the reefs, similar to that recorded in
the wider region, suggests the reefs are in good health and fairly resilient to disturbance.
This study highlights the area’s high biological value beyond its megafauna and lends
support to greater management of these ecosystems for the benefit of the associated
human population.
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Abstract

The coral reefs around Praia do Tofo, southern Mozambique, are known for their aggregations of
marine megafauna but as yet few studies have comprehensively examined their broader
biodiversity. This study is the first to assess the ichthyofaunal diversity of this economically
important area. Methodology involved SCUBA and snorkel underwater visual censuses
conducted between February and May, 2016, and the use of photographic records from 2015 to
capture rare species. A total of 324 species, representing 79 families, were recorded from 16
reefs in the region. The area shows comparable species diversity and notably high family
diversity in relation to other areas of the Western Indian Ocean. The trophic structure of the
reefs, similar to that recorded in the wider region, suggests the reefs are in good health and fairly
resilient to disturbance. This study highlights the area’s high biological value beyond its
megafauna and lends support to greater management of these ecosystems for the benefit of the

associated human population.
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Introduction

The region around Praia do Tofo & Praia da Barra in southern Mozambique has a local economy
built around marine tourism, with well-established recreational SCUBA diving and fishing
industries wholly or partially reliant on tourism. The primary attraction is the opportunity to see
and interact with year-round aggregations of whale sharks and manta rays (Pierce et al. 2010;
Tibirica et al., 2011); as such a lot of scientific research in the area has focused on these
charismatic species (e.g. Pierce et al. 2010; Rohner et al. 2013; 2014). However, as their
populations continue to decline (Rohner ef al. 2013) it is expected that more value will be placed
on the broader marine biodiversity of the region, as has occurred in marine tourism in the
Bazaruto Archipelago National Park (BANP; Schleyer & Celliers, 2005). However the species
richness of this area has not been previously documented, despite the United Nations & World
Heritage Convention (2014) stating that the protected area represented by the BANP be extended

south to include this area.

Praia do Tofo & Praia da Barra are bordered by the tropical and sub-tropical latitudes of the
Western Indian Ocean (WIO) and so support a number of different reef habitats. The most
common are deep offshore patch reefs, characteristic of southern Mozambique, with typically
low levels of coral cover (e.g. Pereira, 2000; Motta et al., 2002; Schleyer & Celliers, 2005).

Other ecosystem types include mangrove swamps, estuarine reefs and shallow inshore fringing
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reefs. This range of habitats suggests a potential for high species richness in the area. But despite
a relatively large associated human population of over 250,000 people (Instituto Nacional de
Estatistica, 2007), there is little to no management in place to safeguard these ecosystems’

services (Pierce et al., 2010).

Species richness data is vital for ecosystem management and provides the baseline from which:
ecosystem stability and function are assessed (Cleland, 2011); key biological components are
identified (Pereira, 2000); and the effects of biodiversity loss on ecosystem provision are
predicted (Bellwood & Hughes, 2001; Gillibrand, Harries & Mara, 2007; Maggs et al., 2010).
This study provides a baseline assessment of reef fish diversity of the seas surrounding Praia do
Tofo & Praia da Barra and highlights the area’s biological value beyond its charismatic

megafauna species.

Materials & Methods

Study Site

The bays of Praia do Tofo (23° 51.205° S 35° 32.882” E) and Praia da Barra (23° 47.541” S 35°
31.142° E) house a number of shallow fringing reefs. However many of the sites frequented by
the local dive industry are in deeper waters to the north and south of these bays. Therefore the
recorded diversity is representative of the wider area stretching approximately 40 km south to
Paindane Bay (site 16; Fig. 1). A total of 16 reef sites (Table 1) were surveyed between February

and May, 2016.

Sampling
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93 The primary method was Underwater Visual Censuses (UVCs) by a single observer to minimize
94 bias (as per English, Wilkinson & Baker, 1997). Deeper sites (> 8 m) were surveyed on SCUBA,
95 as part of a dive charter operated by Peri-Peri Divers, whilst shallow sites were assessed by
96 snorkelling. A total of 1577 minutes of surveying was undertaken. UVCs have a tendency to
97 underestimate cryptic species (Fowler, 1987); therefore, despite relatively extensive surveying,
98 the final list may still prove to be incomplete. All species seen were recorded on an underwater
99 PVC slate during the survey or a photograph was taken for subsequent identification. The list
100 was supplemented by including any species that had been sighted in the year preceding the
101 survey period, and for which there existed photographic evidence (e.g. Mola mola). This was
102 done in an attempt to represent those rare species that utilise the area seasonally (Table 2).
103
104  Trophic Structure
105 The dietary preference of each species was determined using classifications by Harmelin-Vivien
106 (1979); Hiatt & Strasburg (1960); Hobson (1974); Myers (1999); and FishBase

107  (http://fishbase.org). If information on a species’ feeding habit was not available, it was assumed

108 from those of congener species and labelled with a “*’. If this still wasn’t possible, they were

109 labelled ‘unknown’. Eight trophic categories were used, as in Gillibrand, Harries & Mara (2007);
110 Chabanet & Durville (2005); and Durville, Chabanet & Quod, (2003). These were: herbivore;
111 omnivore; browser of sessile invertebrates; diurnal carnivore; nocturnal carnivore; piscivore;

112 diurnal planktivore; and nocturnal planktivore. These groups, except for herbivores and

113 omnivores, could then be grouped into general carnivores sensu lato.

114
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To glean the possible number of species missed during the visual census, the Coral Fish
Diversity Index (CFDI) developed by Allen & Werner (2002) was calculated. This examines the
diversity of six common and easily observable families that can be used as a representative of
reef species richness (SR). These are Pomacanthidae, Labridae, Chaetodontidae, Pomacentridae,
Acanthuridae & Scaridae. For areas < 2000 km?, an estimated SR can be generated using the
equation: SR = 3.39(CFDI) — 20.595

Results

A total of 324 species, representing 79 families, were recorded; 302 via UVCs and 22 using past
photographic records (Table 2). Of the total number of species recorded, 27 were cartilaginous
fish and 297 were bony fish. The CFDI-generated estimated SR was 278. 43% of the overall
diversity was represented by nine families: Acanthuridae; Pomacentridae; Labridae; Serranidae;
Chaetodontidae; Muraenidae; Lutjanidae; Scorpaenidae; and Tetraodontidae. Nearly half the
families recorded (48%) were represented by one species only. Five of these families are

monospecific: Rachycentridae; Rhincodontidae; Rhinidae; Stegostomatidae; and Zanclidae.

When examining broader trophic categories, the carnivores comprise the majority of the species
composition at 80% of the total species (Fig. 2). 17 of the species’ feeding habits were assumed
from those of congener species whilst 11 were labelled as ‘unknown’.

The largest trophic group, the diurnal carnivores representing 26% of the species composition,
was composed largely of labrids whilst the most common nocturnal carnivore families were the
lutjanids, the muraenids and the serranids. Chaetodontids made up the majority of the browsers
of sessile invertebrates, whilst acanthurids and scarids represented most of the herbivores. There

were no other notably common families dominating other trophic groups.
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Discussion

This study represents the first visual assessment of ichthyofaunal diversity for this economically
important area of the southern Mozambique. Through the use of UVCs and retrospective data
collection, 324 species of fish were recorded. The number of species recorded via UVC only is
greater than that predicted from Allen & Werner’s (2002) Coral Fish Diversity Index. Therefore
this list can be seen as near complete, though future surveys may reveal new additions. The
diversity of these reefs is similar to others in the Western Indian Ocean (WIO) that have used
visual censuses as their primary data collection method (Maggs et al., 2010; Chabanet &
Durville, 2005; Gillibrand, Harries & Mara, 2007; Durville, Chabanet & Quod, 2003). When
authors have chosen to comprehensively include species present in historical records (e.g.
McKenna & Allen, 2005) or publicly available collections (e.g. Fricke et al., 2009), species

richness increases dramatically (Table 3).

A notably high diversity of fish families was found when compared to other areas in the WIO
(Table 3). For example, 249 species in 40 families were recorded by Maggs et al. (2010) in the
BANP. Given the higher relative coral cover in the BANP compared to Tofo (Motta ef al., 2002)
a greater species richness would be expected (e.g. Komyakova, Munday & Jones, 2013).
Temporal sampling effort can account for this mismatch with surveying time in this study (1577
mins; 16 sites) being over double that of Maggs et al. (2010; 720 mins; 8 sites), mirroring the
differences in family diversity. Additionally, 38 families in this study were represented by only
one species whilst the BANP study had the equivalent of 17 families. Similarly, a short sampling

time of approximately 330 minutes by Chabanet ef al. (2002) yielded the second lowest value for
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the number of recorded families in Table 3. In contrast, the studies of Chabanet & Durville
(2005), Durville, Chabanet & Quod, (2003), and Gillibrand, Harries & Mara (2007) used more
extensive sampling and observed a higher number of families relative to the number of recorded
species. Gotelli & Colwell (2011) showed that as biodiversity sampling time increases, the
number of species recorded per unit time decreases. Therefore the value of more time-intensive
surveying lies in the detection of less speciose families. Additionally, the present study surveyed
a greater depth range with a maximum depth of 32 metres (Table 1) compared to the 20 metres
reported in other studies (Maggs et al. 2010; Chabanet & Durville, 2005). Distinct changes in the
fish community assemblage along depth gradients have been previously demonstrated
(Friedlander & Parrish, 1998; Jankowski, Graham & Jones, 2015) and attributed to decreased
niche breadth in deeper waters, driving ecological specialisation (Bridge ef al. 2016). This would
also help explain the high number of families represented by one species observed in the present
study. Equally, some species are restricted to shallower depths, in areas of high wave action (e.g.
Acanthurus lineatus; Choat et al. 2012) or different prey types (Bridge et al. 2016). By surveying
a greater depth, a wider variety of physical conditions are accounted for as well as the species
that are specialised to them. The result of differential sampling effort is evident in comparing the
BANP value with that of this study. Despite the total species richness here being greater than that
of Maggs et al. (2010), the CFDI value their study is higher (359 vs. 278). Given its protected
status and large seagrass meadows boosting diversity on nearby reefs (Dorenbosch et al. 2005;

Pereira et al. 2014), you would expect higher diversity in the BANP.

On small oceanic islands with low levels of anthropogenic pressure (e.g. Juan da Nova; Chabanet

& Durville, 2005), a higher species richness would be expected. However in the current study
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184  direct evidence of a fishing-driven decline in reef fish diversity is sparse. Fishing pressure can
185 reduce the diversity of target families (Jennings, Grandcourt & Polunin, 1995; Micheli et al.,
186 2014) but is not necessarily detrimental to total species richness (Jennings & Polunin, 1997,

187 Watson et al., 1996; Francisco-Ramos & Arias-Gonzalez, 2013). Yet it has been demonstrated
188 that protected marine reserves (e.g. Glorieuses Islands) can enhance fish diversity (Cote,

189 Mosqueira & Reynolds, 2001; Friedlander et al., 2003); this could be used as a proxy for the

190 detrimental effects of fishing. In these comparisons however, a more important factor

191 determining fish diversity appears to be the islands’ isolation. This would result in lower levels
192 of immigration, higher probabilities of local extinction and overall lower species richness

193 (MacArthur & Wilson, 1967; Sandin, Vermeij & Hurlbert, 2008; Stier et al., 2014).

194  An alternative explanation for the differences in both species and family diversity could be the
195 high amounts of primary productivity supported by consistent coastal upwelling at this point of
196 the continental shelf (Rohner et al. 2014). Near-shore productivity has been positively linked to
197 species richness in a study by Sandin, Vermeij & Hurlbert (2008) on Caribbean coral reefs. High
198 plankton abundance reduces resource limitation for planktivorous species, potentially decreasing
199 competitive exclusion (Abrams, 1995) and/or increasing population size that can reduce local
200 extinction risk and lead to increased species richness on small spatial scales (Evans, Warren &
201 Gatson, 2005). The proportion of planktivore species in the current study was not notably higher
202 than those in others (e.g. Chabanet & Durville, 2005; Maggs ef al., 2010). However abundance
203 was not recorded and this is the aspect most likely to change as a result of high primary

204 productivity.

205
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206  Carnivores, sensu lato, represented the majority of the present fish community, as in other

207 studies in the WIO (Floros et al., 2012; Chabanet & Durville, 2005; Gillibrand, Harries & Mara,
208 2007). Further comparisons show that the relative proportions of carnivores, omnivores and

209 herbivores are very similar to WIO areas (Table 4); this supports the assertion of Kulbicki (1988)
210 that the trophic structure of reef fish communities is constant throughout a region. In this study,
211 the proportion of carnivores was marginally higher than those with which it was compared

212 (Table 4), likely to due to higher richness in the Dasyatidae (6 sp.) and Muraenidae (14 sp.)

213 families. This suggests that these reefs are in good health according to Harmelin-Vivien’s (1979)
214  observation that carnivore levels are usually between 60-80% on healthy reefs. It may also

215 indicate resilience of these reefs to disturbance. Higher species richness of predator populations
216  can reduce the likelihood of top-down trophic cascades through the suppression of herbivore

217 feeding activity; however this is only when they show specialised dietary preferences (Finke &
218 Denno, 2005). This is also supported by Biswas & Mallik (2011) who showed a correlation

219 Dbetween overall species richness and functional diversity. When there is a higher number of

220 generalist predators, interspecific competition leads to diminished suppression of herbivore

221 populations and so a decrease in primary productivity (Finke & Denno, 2005). As such a small
222 reduction in predator populations through targeted fishing of, for example, serranids could lead
223 to areduction in the % cover of turf algae. This is the dominant substrate type on these reefs

224 (Motta et al. 2002); coupled with the fish assemblage’s trophic structure, this would suggest that
225 algal-dominance is the ecosystems’ healthy state (as in Friedlander ef al. 2004). Therefore, a

226 reduction in algal cover is likely to cause a fundamental change in fish community assemblage.
227  This may be driven by alterations to bottom-up trophic energy transfer, as turf algae are

228 important primary producers (Haas et al., 2011; Jantzen ef al., 2013). Therefore as an extension
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229 of Harmelin-Vivien’s (1979) assertion, high species richness in carnivore/predator populations
230 can be used as an indicator for reef health when the trophic composition of the predators is

231 considered (Finke & Denno, 2005)

232

233 Differences in regional comparisons are likely due to the varied sampling effort employed across
234  the studies. A consequence of greater temporal and spatial sampling effort seems to be that it has
235 more value in detecting new families compared new species. Nonetheless, the diversity of the
236 area is higher than we may expect given its level of unregulated anthropogenic exploitation. This
237 may be due to high levels of upwelling causing low local extinction rates. When simultaneously
238 examining trophic structure and species richness, the conclusion may be drawn that these reefs
239 are currently healthy. Their resilience will depend on the functional diversity of the species

240 assemblage; this is a superior measure of the stability of ecosystem function (Cleland, 2011). So
241  while the species richness alone may indicate reef resilience, formal testing of this is needed to
242 understand the susceptibility of these reefs to trophic cascades.

243
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Figure 1(on next page)
Survey Site Map

Map of the study area and its location along the coast of Mozambique (inset). Sampled reefs

are indicated by (¢); their broad characteristics are described in Table 1.
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Table 1(on next page)

Survey Site Descriptions and Sampling Effort

Names and descriptions of sampled reefs, as well as the amount of time spent surveying

each location.
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Site Name Site Description Sampling Sampling

(Number) Method Effort
(mins)
Amazon (1)  Offshore, horseshoe reef with an abundance of SCUBA 87

azooxanthellate soft corals; 23 — 28 metres.

Hospital (2)  Offshore, southward sloping reef with occasional SCUBA 80
short pinnacles; 24 — 26 metres.

The Office Topographically complex offshore reef with an SCUBA 139
(3) abundance of overhangs and valleys with many
encrusting soft corals; 22 — 26 metres.

Reggie’s (4) Tall, offshore reef rising between 4 — 8 metres from  SCUBA 124
the seafloor; reef crests are dominated by large
colonies of Tubastrea micranthus; 22 — 30 metres.

Buddies (5)  Shallow, inshore reef subject to persistent swell and ~ SCUBA 57
fishing pressure; 8 — 10 metres.

The Wall (6) Shallow estuarine reef with daily exposure to strong  Snorkel 70
tidal currents; a combination of seagrass, rocky reef
and sand patch microhabitats; 0-4 metres.

Mike’s Submerged sand dune reef, with many potholes and SCUBA 66
Cupboard gullies surrounded by sandy reef flats; 12 — 16

(7) metres.

Salon (8) Shallow inshore reef composed of multiple large SCUBA 53

pinnacles surrounded by sandy bottom; subject to
high turbidity from wave action; 10-14 metres.

Sherwood Offshore reef just outside of Tofo bay, made of one =~ SCUBA 40

Forest (9) large and one smaller pinnacle both supporting large
populations of Tubastrea micranthus; 22 — 26 metres
Giants Straight north-south reef with an extensive reef flat ~ SCUBA 162

Castle (10) and deep reef wall; known within the local dive
industry as having the best sighting rate for marine
megafauna; 27 — 32 metres.

Marble Arch Inshore reef exposed to minor wave action; large SCUBA 51
(11) reef flat with a few large potholes and one large rock

arch; 14 — 18 metres.
Rob’s Very patchy eastward sloping reef that is often SCUBA 83
Bottom (12)  subject to high current with high algal cover; 23 — 27

metres.
Manta Reef A large offshore reef, with a large central reef flat; SCUBA 290
(13) peripheries are characterised by short, steep reef

slopes with a number of tall pinnacles; 18 — 24

metres

Outback (14) Similar reef shape as Giant’s Castle, yet with more SCUBA 40
small inlets that house a number of deep overhangs
and archways; 25 — 30 metres.

Coconut Bay Shallow inshore rocky reef with small patches of Snorkel 53
(15) encrusting soft coral and larger swathes of seagrass;
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4 — 8 metres.
Paindane Small, shallow reef protected from offshore waves Snorkel 182
Coral by a barrier rock extending from shore; the most
Gardens (16) abundant coral community in this area, dominated

by Sinularia spp. soft coral and corymbose

acroporids; 1 — 6 metres.
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Table 2(on next page)

Reef Fish Species List

Reef fish species inventory for the Tofo/Barra area of Mozambique, sighted through surveys

(S) and photographic records (P).
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FAMILIES - Species - Authors Sighting Trophic

Record Category
ACANTHURIDAE
Acanthurus dussumieri Cuvier & Valenciennes, 1835 S H
Acanthurus leucosternon Bennett, 1833 S H
Acanthurus lineatus Linnaeus, 1758 S H
Acanthurus nigrofuscus Forsskal, 1775 S H
Acanthurus tennentii Ginther, 1861 S H
Acanthurus triostegus Linnaeus, 1758 S H
Acanthurus xanthopterus Valenciennes, 1835 S H
Naso brachycentron Valenciennes, 1835 S H
Naso brevirostris Cuvier, 1829 S H
Paracanthurus hepatus Linngé, 1766 S DPL
Zebrasoma desjardinii Bennett, 1836 S H
AMBASSIDAE
Ambassis natalensis Gilchrist & Thompson, 1908 S DC
ANTENNARIIDAE
Antennarius coccineus Lesson, 1831 S Pi
Antennarius commerson Lacepede, 1798 S Pi
Antennarius nummifer Cuvier, 1817 P Pi
APOGONIDAE
Cheilodipterus quinquelineatus Cuvier, 1828 S NC
Ostorhinchus angustatus Smith & Radcliffe, 1911 S BSI
Ostorhinchus fleurieu Lacepéde, 1802 S BSI*
Pristiapogon kallopterus Bleeker, 1856 S NC
ATHERINIDAE
Atherinomorus lacunosus Forster, 1801 S NPL
AULOSTOMIDAE
Aulostomus chinensis Linnaeus, 1766 S Pi
BALISTIDAE
Balistapus undulatus Park, 1797 S DC
Balistoides conspicillum Bloch & Schneider, 1801 S DC
Balistoides viridescens Bloch & Schneider, 1801 S DC
Odonus niger Riippell, 1836 S DC
Pseudobalistes fuscus Bloch & Schneider, 1801 S DC
Rhinecanthus aculeatus Linnaeus, 1758 S DC
Rhinecanthus rectangulus Bloch & Schneider, 1801 S (@)
Sufflamen bursa Bloch & Schneider, 1801 S DC
Xanthichthys lineopunctatus Hollard, 1854 S DC*
BLENNIIDAE
Aspidontus dussumieri Valenciennes, 1836 S H
Aspidontus taeniatus Quoy & Gaimard, 1834 S DC
Aspidontus tractus Fowler, 1903 S DC
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FAMILIES - Species - Authors Sighting Trophic

Record Category
Cirripectes stigmaticus Strasburg & Schultz, 1953 S H
Ecsenius midas Starck, 1969 S H
Istiblennius edentulous Forster & Schneider, 1801 S H
Plagiotremus rhinorhynchos Bleeker, 1852 S NPL
Plagiotremus tapeinosoma Bleeker, 1857 S o
BOTHIDAE
Bothus mancus Broussonet, 1782 P DC
Bothus pantherinus Riippell, 1830 S NC
CAESIONIDAE
Caesio varilineata Carpenter, 1987 S DPL
Caesio xanthalytos Holleman, Connell & Carpenter, 2013 S DPL*
Caesio xanthonata Bleeker, 1853 S DPL
Pterocaesio marri Schultz, Herald, Lachner, Welander & S DPL
Woods, 1953
Pterocaesio tile Cuvier & Valenciennes, 1830 S DPL
CALLIONMYIDAE
Neosynchiropus stellatus Smith, 1963 S DC
CARANGIDAE
Alectis ciliaris Bloch, 1787 P DC
Alectis indica Riippell, 1830 P DC
Caranx bucculentus Alleyne & Macleay, 1877 P DC
Caranx ignobilis Forsskal, 1775 S DC
Caranx melampygus Cuvier, 1833 S DC
Caranx sexfasciatus Quoy & Gaimard, 1825 S Pi
Gnathanodon speciosus Forsskal, 1775 S DC
CARCHARHINIDAE
Carcharhinus amblyrhynchos Bleeker, 1856 S Pi
Carcharhinus leucas Miiller & Henle, 1839 P DC
Carcharhinus limbatus Miiller & Henle, 1839 S Pi
Carcharhinus melanopterus Quoy & Gaimard, 1824 S Pi
Carcharhinus obscurus Lesueur, 1818 P DC
Triaenodon obesus Riippell, 1837 S DC
CENTRISCIDAE
Aeoliscus strigatus Giinther, 1861 P DC
CHAETODONTIDAE
Chaetodon auriga Forsskal, 1775 S BSI
Chaetodon blackburnii Desjardins, 1836 S BSI
Chaetodon dolosus Ahl, 1923 S BSI
Chaetodon guttatissimus Bennett, 1833 S BSI
Chaetodon interruptus Ahl, 1923 S BSI
Chaetodon kleinii Bloch, 1790 S BSI
Chaetodon lineolatus Cuvier, 1831 S BSI
Chaetodon lunula Lacepéde, 1802 S BSI
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FAMILIES - Species - Authors Sighting Trophic

Record Category
Chaetodon madagaskariensis Ahl, 1923 S BSI
Chaetodon melannotus Bloch & Schneider, 1801 S BSI
Chaetodon meyeri Bloch & Schneider, 1801 S BSI
Chaetodon trifascialis Quoy & Gaimard, 1825 S BSI
Chaetodon xanthurus Bleeker, 1857 S BSI
Forcipiger flavissimus Jordan & McGregor, 1898 S BSI
Hemitaurichthys zoster Bennett, 1831 S DPL
Heniochus acuminatus Linnaeus, 1758 S BSI
Heniochus diphreutes Jordan, 1903 S DPL
Heniochus monoceros Cuvier, 1831 S BSI
CIRRHITIDAE
Cirrhitichthys oxycephalus Bleeker, 1855 S DC
Cyprinocirrhites polyactis Bleeker, 1874 S DPL
Oxycirrhites typus Bleeker, 1857 P DPL
Paracirrhites arcatus Cuvier, 1829 S DC
Paracirrhites forsteri Schneider, 1801 S DC
CLINIDAE
Clinus venustris Gilchrist & Thompson, 1908 S U
Pavoclinus laurentii Gilchrist & Thompson, 1908 S U
CLUPEIDAE
Gilchristella aestuaria Gilchrist, 1913 S DPL
CONGRIDAE
Heteroconger hassi Klausewitz & Eibl-Eibesfeldt, 1959 S NC
DACTYLOPTERIDAE
Dactyloptena orientalis Cuvier, 1829 S NC
DASYATIDAE
Dasyatis microps Annandale, 1908 S NC*
Himantura jenkinsii Annandale, 1909 S NC
Himantura uarnak Gmelin, 1789 S NC
Neotrygon kuhlii Miller & Henle, 1841 S NC
Taeniura lymma Forsskal, 1775 P NC
Taeniura meyeni Miiller & Henle, 1841 S NC
DIODONTIDAE
Diodon holocanthus Linnaeus, 1758 S NC
Diodon hystrix Linnaeus, 1758 S NC
Diodon liturosus Shaw, 1804 S NC
ECHENEIDAE
Echeneis naucrates Linnaeus, 1758 S NC
ENGRAULIDAE
Thryssa vitrirostris Gilchrist & Thompson, 1908 S DPL
EPHIPPIDAE
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FAMILIES - Species - Authors Sighting Trophic

Record Category
Platax teira Forsskél, 1775 S (@)
FISTULARIIDAE
Fistularia commersonii Riippell, 1838 S Pi
GERREIDAE
Gerres longirostris Lacepede, 1801 S DC
GINGLYMOSTOMATIDAE
Nebrius ferrugineus Lesson, 1831 P NC
GOBIIDAE
Amblyeleotris steinitzi Klausewitz, 1974 S DC
Amblyeleotris wheeleri Polunin & Lubbock, 1977 S DC*
Caffrogobius saldanha Barnard, 1927 S U
Valenciennea strigata Broussonet, 1782 S DC
HAEMULIDAE
Diagramma pictum Thunberg, 1792 S DC
Plectorhinchus flavomaculatus Cuvier, 1830 S NC
Plectorhinchus gaterinus Forsskal, 1775 S NC
Plectorhinchus playfairi Pellegrin, 1914 S DC
Plectorhinchus vittatus Linnaeus, 1758 S NC
HEMIRAMPHIDAE
Hyporhamphus affinis Giinther, 1866 S 0]
HOLOCENTRIDAE
Myripristis adusta Bleeker, 1853 S NPL
Myripristis berndti Jordan & Evermann, 1903 S NC
Myripristis botche Cuvier, 1829 S NC
Mpyripristis murdjan Forsskal, 1775 S NPL
Neoniphon samara Forsskal, 1775 S NC
Pagellus natalensis Steindachner, 1903 S O
Sargocentron caudimaculatum Riippell, 1838 S NC
Sargocentron diadema Lacepede, 1802 S NC
Sargocentron spiniferum Forsskal, 1775 S NC
ISTIOPHORIDAE
Istiompax indica Cuvier, 1832 S Pi
Istiophorus platypterus Shaw, 1792 P Pi
Makaira nigricans Lacepede, 1802 P Pi
KYPHOSIDAE
Kyphosus vaigiensis Quoy & Gaimard, 1825 S H
LABRIDAE
Anampses meleagrides Valenciennes, 1840 S DC
Bodianus anthioides Bennett, 1832 S DC
Bodianus axillaris Bennett, 1832 S DC
Bodianus diana Lacepede, 1801 S DC
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Record Category
Bodianus trilineatus Fowler, 1934 S DC*
Cheilinus trilobatus Lacepéde, 1801 S DC
Cheilinus undulates Riippell, 1835 S DC
Cheilio inermis Forsskal, 1775 S DC
Coris caudimacula Quoy & Gaimard, 1834 S DC
Coris formosa Bennett, 1830 S DC
Gomphosus caeruleus Lacepede, 1801 S DC
Gomphosus varius Lacepéde, 1801 S DC
Halichoeres cosmetus Randall & Smith, 1982 S DC
Halichoeres iridis Randall & Smith, 1982 S DC
Halichoeres nebulosus Valenciennes, 1839 S DC
Halichoeres scapularis Bennett, 1832 S DC
Halichoeres zeylonicus Bennett, 1833 S DC
Labroides bicolor Fowler & Bean, 1928 S DC
Labroides dimidiatus Valenciennes, 1839 S DC
Macropharyngodon bipartitus Smith, 1957 S DC
Macropharyngodon cyanoguttatus Randall, 1978 S DC*
Novaculichthys taeniourus Lacepéde, 1801 S DC
Thalassoma amblycephalum Bleeker, 1856 S DC
Thalassoma hebraicum Lacepéde, 1801 S DC
Thalassoma lunare Linnaeus, 1758 S DC
LUTJANIDAE
Aprion virescens Valenciennes, 1830 S Pi
Lutjanus ehrenbergii Peters, 1869 S NC
Lutjanus fulviflamma Forsskal, 1775 S NC
Lutjanus gibbus Forsskél, 1775 S NC
Lutjanus kasmira Forsskal, 1775 S NC
Lutjanus lutjanus Bloch, 1790 S NC
Lutjanus monostigma Cuvier, 1828 S NC
Lutjanus notatus Cuvier, 1828 S NC
Lutjanus rivulatus Cuvier, 1828 S NC
Lutjanus sebae Cuvier, 1816 S NC
Macolor niger Forsskal, 1775 S NC
Paracaesio sordida Abe & Shinohara, 1962 S DPL
MALACANTHIDAE
Malacanthus brevirostris Guichenot, 1848 S DC
MICRODESMIDAE
Nemateleotris magnifica Fowler, 1938 S NPL
Ptereleotris evides Jordan & Hubbs, 1925 S NPL
Ptereleotris heteroptera Bleeker, 1855 S DP
MOLIDAE
Mola mola Linnaeus, 1758 P DC
MONACANTHIDAE
Cantherhines fronticinctus Giinther, 1867 S BSI
Acreichthys tomentosus Linnaeus, 1758 S DC
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Record Category
Aluterus scriptus Osbeck, 1765 S O
Stephanolepis auratus Castelnau, 1861 S U
MONOCENTRIDAE
Cleidopus gloriamaris De Vis, 1882 P U
MONODACTYLIDAE
Monodactylus argenteus Linnaeus, 1758 S DPL
MULLIDAE
Mulloidichthys ayliffe Uiblein, 2011 S NC
Mulloidichthys flavolineatus Lacepéde, 1801 S NC
Mulloidichthys vanicolensis Valenciennes, 1831 S NC
Parupeneus barberinus Lacepede, 1801 S DC
Parupeneus indicus Shaw, 1803 S DC
Parupeneus macronemus Lacepede, 1801 S DC
MURAENIDAE
Echidna nebulosa Ahl, 1789 S NC
Enchelycore pardalis Temminck & Schlegel, 1846 S Pi
Gymnomuraena zebra Shaw, 1797 S NC
Gymnothorax breedeni McCosker & Randall, 1977 S NC
Gymnothorax eurostus Abbott, 1860 S NC
Gymnothorax favagineus Bloch & Schneider, 1801 S NC
Gymnothorax flavimarginatus Riippell, 1830 S Pi
Gymnothorax griseus Lacepéde, 1803 S NC*
Gymnothorax javanicus Bleeker, 1859 S NC
Gymnothorax meleagris Shaw, 1795 S DC
Gymnothorax miliaris Kaup, 1856 S DC
Gymnothorax nudivomer Giinther, 1867 S NC*
Gymnothorax undulates Lacepéde, 1803 S NC
Rhinomuraena quaesita Garman, 1888 P Pi
MYLIOBATIDAE
Aetobatus narinari Euphrasen, 1790 P DC
Manta alfredi Krefft, 1868 S DPL
Manta birostris Walbaum, 1792 S DPL
Mobula japonica Miiller & Henle, 1841 S DPL
ODONTASIPSIDAE
Carcharias taurus Rafinesque, 1810 S DC
OPHICHTHIDAE
Myrichthys colubrinus Boddaert, 1781 S NC
Myrichthys maculosus Cuvier, 1816 S NC
Pisodonophis cancrivorus Richardson, 1848 P NC
OPLEGNATHIDAE
Oplegnathus robinsoni Regan, 1916 S o
OSTRACIIDAE
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Record Category
Lactoria fornasini Bianconi, 1846 S BSI*
Lactoria cornuta Linnaeus, 1758 S BSI
Ostracion cubicus Linnaeus, 1758 S BSI
Ostracion meleagris Shaw, 1796 S BSI
PEGASIDAE
Eurypegasus draconis Linnaeus, 1766 S BSI
PEMPHERIDAE
Parapriacanthus ransonneti Steindachner, 1870 S NPL
Pempheris schwenkii Bleeker, 1855 S NPL
PINGUIPEDIDAE
Parapercis schauinslandii Steindachner, 1900 S DC
PLATYCEPHALIDAE
Papilloculiceps longiceps Cuvier, 1829 S DC
PLOTOSIDAE
Plotosus lineatus Thunberg, 1787 S NC
POMACANTHIDAE
Apolemichthys trimaculatus Cuvier, 1831 S (0]
Centropyge acanthops Norman, 1922 S 0]
Centropyge bispinosa Giinther, 1860 S 0
Centropyge multispinis Playfair, 1867 S (0]
Pomacanthus chrysurus Cuvier, 1831 S o
Pomacanthus imperator Bloch, 1787 S o
Pomacanthus rhomboides Gilchrist & Thompson, 1908 S o*
Pomacanthus semicirculatus Cuvier, 1831 S BSI
Pygoplites diacanthus Boddaert, 1772 S BSI
POMACENTRIDAE
Abudefduf natalensis Hensley & Randall, 1983 S O
Abudefduf sexfasciatus Lacepede, 1801 S O
Abudefduf vaigiensis Quoy & Gaimard, 1825 S (0]
Amphiprion allardi Klausewitz, 1970 S o
Amphiprion perideraion Bleeker, 1855 S O*
Chromis fieldi Randall & DiBattista, 2013 S DPL
Chromis nigrura Smith, 1960 S DPL
Chromis viridis Cuvier, 1830 S 0]
Chromis weberi Fowler & Bean, 1928 S DPL
Chrysiptera unimaculata Cuvier, 1830 S (0]
Dascyllus aruanus Linnaeus, 1758 S DPL
Dascyllus carneus Fischer, 1885 S O
Dascyllus trimaculatus Riippell, 1829 S DPL
Neopomacentrus cyanomos Bleeker, 1856 S U
Plectroglyphidodon dickii Liénard, 1839 S o
Pomacentrus caeruleus Quoy & Gaimard, 1825 S (0]
Pomacentrus pavo Bloch, 1787 S o
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Stegastes fasciolatus Ogilby, 1889 S H
Stegastes pelicieri Allen & Emery, 1985 S H
PRIACANTHIDAE
Priacanthus hamrur Forsskal, 1775 S NC
PSEUDOCHROMIDAE
Pseudochromis dutoiti Smith, 1955 S DC
RACHYCENTRIDAE
Rachycentron canadum Linnaeus, 1766 S DC
RHINCODONTIDAE
Rhincodon typus Smith, 1828 S DPL
RHINIDAE
Rhina ancylostoma Bloch & Schneider, 1801 P NC
RHINOBATIDAE
Rhinobatus annulatus Miiller & Henle, 1841 P NC
Rhinobatus leucospilus Norman, 1926 S NC
Rhynchobatus djiddensis Forsskal, 1775 S NC
SCARIDAE
Chlorurus cyanescens Valenciennes, 1840 S H
Chlorurus sordidus Forsskal, 1775 S H
Scarus ghobban Forsskal, 1775 S H
Scarus rubroviolaceus Bleeker, 1847 S H
Scarus scaber Valenciennes, 1840 S H
Scarus tricolor Bleeker, 1847 S H
SCOMBRIDAE
Euthynnus affinis Cantor, 1849 S DC
Gymnosarda unicolor Riippell, 1836 S Pi
Katsuwonus pelamis Linnaeus, 1758 S DC
Scomberomorus commerson Lacepede, 1801 S Pi
Scomberomorus plurilineatus Fourmanoir, 1966 P Pi
Thunnus albacares Bonnaterre, 1788 S DC
SCORPAENIDAE
Dendrochirus brachypterus Cuvier, 1829 S NC
Dendrochirus zebra Cuvier, 1829 S NC
Parascorpaena mossambica Peters, 1855 S U
Pterois antennata Bloch, 1787 S DC
Pterois miles Bennett, 1828 S Pi
Rhinopias eschmeyeri Condé, 1977 P Pi*
Rhinopias frondosa Giinther, 1892 P Pi
Scorpaenopsis diabolus Cuvier, 1829 S Pi
Scorpaenopsis oxycephala Bleeker, 1849 S Pi
Scorpaenopsis venosa Cuvier, 1829 S DC
Taenianotus triacanthus Lacepede, 1802 S DC
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SERRANIDAE
Cephalopholis argus Schneider, 1801 S Pi
Cephalopholis miniata Forsskal, 1775 S NC
Cephalopholis sonnerati Valenciennces, 1828 S NC
Epinephelus chlorostigma Valenciennes, 1828 S NC
Epinephelus fasciatus Forsskal, 1775 S NC
Epinephelus flavocaeruleus Lacepede, 1802 P Pi
Epinephelus lanceolatus Bloch, 1790 P NC
Epinephelus macrospilos Bleeker, 1855 S DC
Epinephelus malabaricus Bloch & Schneider, 1801 S NC
Epinephelus merra Bloch, 1793 S Pi
Epinephelus rivulatus Valenciennes, 1830 S Pi
Epinephelus tauvina Forsskal, 1775 S Pi
Epinephelus tukula Morgans, 1959 S NC
Grammistes sexlineatus Thunberg, 1792 S NC
Nemanthias carberryi Smith, 1954 S DPL
Plectropomus punctatus Quoy & Gaimard, 1824 S Pi
Pogonoperca punctate Valenciennes, 1830 S NC*
Pseudanthias evansi Smith, 1954 S DPL
Pseudanthias squamipinnus Peters, 1855 S DPL
SIGANIDAE
Siganus luridus Riippell, 1829 S H
SOLEIDAE
Solea turbynei Gilchrist, 1904 S U
SPARIDAE
Chrysoblephus puniceus Gilchrist & Thompson, 1908 S DC
Diplodus hottentotus Smith, 1844 S DC
SPHRYNIDAE
Sphyrna lewini Griffith & Smith, 1834 S DC
SPHYRAENIDAE
Sphyraena putnamae Jordan & Seale, 1905 S NC
STEGOSTOMATIDAE
Stegostoma fasciatum Hermann, 1783 S NC
SYNANCEIIDAE
Synanceia verrucosa Bloch & Schneider, 1801 S Pi
SYNGNATHIDAE
Corythoichthys intestinalis Ramsay, 1881 P DC
Doryrhamphus dactyliophorus Bleeker, 1853 S DPL
Hippocampus borboniensis Duméril, 1870 S DPL*
Hippocampus camelopardalis Bianconi, 1854 P DPL*
Hippocampus histrix Kaup, 1856 S DPL
Hippocampus kuda Bleeker, 1852 S DPL
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Solenostomus cyanopterus Bleeker, 1854 S DC
Trachyrhamphus bicoarctatus Bleeker, 1857 S U
SYNODONTIDAE
Synodus dermatogenys Fowler, 1912 S Pi
Synodus jaculum Russell & Cressey, 1979 S Pi
TETRAODONTIDAE
Arothron hispidus Linnaeus, 1758 S NC
Arothron meleagris Anonymous, 1798 S NC
Arothron nigropunctatus Bloch & Schneider, 1801 S NC
Arothron stellatus Anonymous, 1798 S NC
Canthigaster amboinensis Bleeker, 1864 S H
Canthigaster bennetti Bleeker, 1854 S (0]
Canthigaster janthinoptera Bleeker, 1855 S o
Canthigaster smithae Allen & Randall, 1977 S O*
Canthigaster solandri Richardson, 1845 S o
Canthigaster valentine Bleeker, 1853 S o
TETRAROGIDAE
Ablabys binotatus Peters, 1855 U
Ablabys macracanthus Bleeker, 1852 U
TORPEDINIDAE
Torpedo marmorata Risso, 1810 S Pi
Torpedo spp. S Pi
ZANCLIDAE
Zanclus cornutus Linnaeus, 1758 S DC

Trophic Categories: Herbivore (H); Omnivore (O); Browser of Sessile Invertebrates (BSI); Diurnal
Carnivore (DC); Nocturnal Carnivore (NC); Piscivore (Pi); Diurnal Planktivore (DPL); Nocturnal
Planktivore (NPL); Unknown (U)
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Figure 2(on next page)

Trophic Structure of Tofo Reef Fish Communities

The trophic structure of the recorded reef fish community.
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Table 3(on next page)

Species and Family Diversity in the Western Indian Ocean.

Comparison of species and family diversity in other areas of the Western Indian Ocean (WIO).
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Location Reference No. of No. of Species to
Species Families  Family Ratio (2

d. p.)

BANP Maggs et al. (2010) 249 40 6.23:1

Tofo/Barra This study 324 79 4.16:1

Juan de Nova Chabanet & Durville, 299 55 5.44:1

(2005)

Andavadoaka Gillibrand et al. (2007) 334 58 5.76:1

Mayotte Wickel et al. (2014) 759 118 6.43:1

Glorieuses Islands Durville et al. (2003) 332 57 5.82:1

Geyser & Zelee Chabanet et al. (2002) 294 43 6.84:1

Banks

Maputaland & Floros et al. (2012) 284 50 5.68:1

Ponta Malongane

Bassas da India Van der Elst & Everett 311 50 6.22:1

(2015)

Northwestern McKenna & Allen (2005) 788 91 8.66:1

Madagascar

Mafia Island Garpe & Ohman, (2003) 394 56 7.04:1

Watamu Marine Cowburn et al., (2013) 354 56 6.32:1

Park

La Réunion Fricke et al., (2009) 965 160 6.03:1
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Table 4(on next page)

Trophic Structure across the Western Indian Ocean

Trophic structure of reef fish communities (expressed as % of total species recorded) in other

areas of the Western Indian Ocean (WIO).
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Location Reference Carnivores Herbivores (% Omnivores (%

(% of total) of total) of total)
BANP Maggs et al., 2010 76 12 12
Tofo/Barra This study 80 8 9
Juan de Nova Chabanet & 73 16 11
Durville, 2005
Andavadoaka Gillibrand et al., 76 13 11
2007
Mayotte Wickel et al., 2014 78 8 13
Glorieuses Islands Durville et al., 2003 73 15 12
Geyser & Zelee Banks Chabanet et al., 72 16 12
2002
Maputaland & Ponta Floros et al., 2012 78 11 11

Malongane
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